
Scientific Computing on Graphics 
Processing Units        

 
SF13    JULY 31, 2013 

ARGONNE NATIONAL LABORATORY 
NICHOLAS FRONTIERE 1 

Nicholas Frontiere 
ANL/University of 

Chicago 
ATPESC 



Overview 
�  GPU vs. CPU 

�  CUDA vs. OpenCL (Briefly) 

�  OpenCL execution and memory framework 

�  GPU Hardware 

�  GPU Coding Obstacles and Solutions 
�  Lock in Step execution (divergent if ’s) 

�  Memory Latency 

�  Coalesced Memory 

�  Bank Conflicts 

�  N-Body Example 

�  Conclusion 
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GPU vs. CPU 

*D. Kirk & W. Hwu 2010  
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CPU 
�  Follows the “multicore” design of a microprocessor 

�  Attempt to increase the speed of sequential programs. 
�  Example Intel i7 processor. 

�  Optimized to handle out of order execution 
�  Retains multilevel cache for quick memory access 
�  Implements sophisticated branch prediction 
�  Multiple cores allow for increased multi-tasking as well as threading  
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GPU 
�  Follows the “many-core” design of a microprocessor 

�  Maximize throughput of parallel algorithms.  

�  Typically the number of cores doubles with each new generation 
�  Same is true for CPUs, yet GPU’s have many many more cores.  

�  Throughput of Single Precision has increased dramatically 

*http://docs.nvidia.com/ 
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Would you rather outsource to a 
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Question 

Low Latency  
Good Throughput 

High Latency  
Low Throughput 

Capable Contractor Grad Student  



BUT what about MORE grad students? 
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Question 



BUT what about MORE grad students? 
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Low Latency  
Good Throughput 

Ok Latency  
High Throughput 

GPU vs. CPU 

Do NOT forget  
Amdahl’s law 
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n− Number of  Threads
T −Execution Time
F − Serial  Fraction

Speedup = T (1)
T (n)

=
1

F + (1−F)
n



Take Away 

Completely limited by the 
Serial Fraction! 
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� Examples of GPU accelerated code: 
� Matrix multiplication, Graphics, Tabular 

applications,  Visual Reduction, etc. 



OpenCL vs. Cuda 

�  Both languages capable of executing GPU kernels. 

�  CUDA is vendor dependent (Nvidia GPUs) 

�  OpenCL can run on many different heterogeneous platforms (CPU, 
GPU, DSP, etc) 

�  CUDA is more mature and as a result has highly optimized libraries 

�  OpenCL would be considered a “lower level” language and thus harder 
to code. 

�  Which to choose? 
�  Depends on what you want to do, what platforms you want to use, and the targeted 

users. 
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OpenCL Platform Model 

�  Host code (CPU)  
�  Device Queries and Platform Setups (allows one to use multiple devices) 

�  Push/pull memory to/from device (GPU) 

�  Compile and Launch Kernel(s) 

�  Typically performs the branched logic of the application 

�  Kernel Code (GPU) 
�  Run on the “Compute unit” (GPU) 

�  Executed on each thread 

�  Reads/Writes to Device memory (GPU DRAM) 

�  Has NO access to Host (CPU) memory  
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__kernel void addTwoArrays(__global float * arr, __global float* arr2,         
                                           __global float * return) 
 
{ 
   return[get_global_id(0)]=arr[get_global_id(0)] 
                                      +arr2[get_global_id(0)]; 
}   
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    // Create an OpenCL context on first available platform 
    context = CreateContext(); 
 
    // Create a command-queue on the first device available on the created context 
    commandQueue = CreateCommandQueue(context, &device); 
 
    // Create OpenCL program from HelloWorld.cl kernel source 
    program = CreateProgram(context, device, "HelloWorld.cl"); 
    // Create OpenCL kernel 
    kernel = clCreateKernel(program, "hello_kernel", NULL); 
     
      // Set the kernel arguments (result, a, b) 
    errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &memObjects[0]); 
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObjects[1]); 
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &memObjects[2]); 
    size_t globalWorkSize[1] = { ARRAY_SIZE }; 
    size_t localWorkSize[1] = { 1 }; 
 
    // Queue the kernel up for execution across the array 
    errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, 
                                    globalWorkSize, localWorkSize, 
                                    0, NULL, NULL); 
    // Read the output buffer back to the Host 
    errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], CL_TRUE, 
                                 0, ARRAY_SIZE * sizeof(float), result, 
                                 0, NULL, NULL); 



OpenCL Kernel Execution 
�  Kernels get executed by threads or “work items.” Each item is assigned 

a “global index (id)” 

�  These work items are collected as “work groups,” and assigned a “group 
id” and “local id” 

�  These id’s allow the kernel code to perform thread, group, or global 
specific tasks.  
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OpenCL Memory Hierarchy 
� __Global Memory:  Available to all work items; high latency 

fetching (hundreds of cycles). 

� __Constant Memory: Read only memory, low latency. 

� __Local Memory:  Available to a group of threads, fast 
fetching 

� __Private Memory:  Available to each thread 

� Host (CPU) Global Memory: Not accessible to device 
threads. Needs to be pushed by host code to device. High 
latency 
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GPU Hardware 
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GPU Hardware http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf 



GPU Hardware 

�  Each Work-Item (thread) is executed on a Stream Processor (SP) 

�  SPs are located on one Stream Multiprocessor (SM or SMX) 
�  Work-Groups are executed on SM’s, where local memory is provided.  

�  Warp Schedulers execute threads of  Work-groups on the SM’s; a 
common optimization goal is to execute as many “warps” on each SM 
as possible.  
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GPU Execution Model (SIMT) 

�  Work Groups are executed via 32 thread launches (aka Warps) 

�  Warps follow Single Instruction Multiple Threading (i.e. all threads in a 
warp perform the SAME instruction); Optimization implications, will 
come back to this. 

�  Multiple warps can be executed concurrently on the same SM, aka 
“waves.” Keplar GPU’s can schedule 4 warps concurrently. However the 
maximum number of warps will not always launch; Depends on 
memory , number of threads per warp, number of threads per group, 
etc. 

�  Tails: If groups are not divisible by warp size, can affect performance.  
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GPU Hardware 
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GPU Hardware http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf 
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GPU Hardware http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf 



GPU obstacle:  
Shortage of Memory 

�  Copying memory from the host CPU to GPU is a necessary step in all 
GPU kernel applications. 

�  Unfortunately, GPUs can only store a couple GBs of memory in total; 
even state-of-the-art Kepler can only hold around 8 GBs. Many 
applications require more, and as a result employ continuous reading 
and writing to the GPU. This can typically result in transfer latency 
performance hits. 

�  Possible solution: Simultaneously copy memory to the GPU while 
performing calculations on the previous memory transfer.  
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Lock-Step Execution 
�  Simple example is a divergent IF statemet: 

 

 

�  SIMT ensures that when a warp of threads is launched for a work-group 
and encounters the above statement, both branches are executed 
(BAD).  

�  Two Solutions: 
�  A) DON’T DO IT! 

�  B) Make the branched logic modulo warp size.  

�  Regardless should play around with group size 
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If(get_local_id (0) < 4) { 
       Do something 
 } else { 
       Do something else 
 } 



Memory Latency  

�  Fetching global memory requires many latency cycles (~ hundreds), and 
a result is one of the biggest performance hits.  

�  Local Memory on the other hand has much less latency cycles (~tens) 
but can have bank conflicts (described later) 

�  Solutions: 
�  A) Hide latency with arithmetic calculation; while threads are waiting for a memory 

transfer other warps can be launched to do calculations. Depends on algorithm. 

�  B) Do one copy from global to local memory and use the local memory speed to 
distribute the data. Can make use of Coalesced memory. NOTE: Global memory has 
GBs of data, whereas the local memory per SM has KBs.  Very important to proceed 
this way if original fetch was going to be non-coalesced.   
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__kernel void addTwoArrays(__global float * arr, __global float* arr2,         
                                           __global float * return) 
 
{ 
   return[get_global_id(0)]=arr[get_global_id(0)] 
                                      +arr2[get_global_id(0)]; 
}   



Coalesced Memory Transfer 
�  If memory is accessed non-contiguously, memory fetches will be 

performed sequentially (BAD if from global memory) 

 

 

 

�  If desired memory fetches are coalesced, the GPU can perform them all 
at once (modulo half warp size).  
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Threads (id) 

Memory 

Newly Allowed 



Bank Conflicts 
�  To avoid multiple global memory latencies, one can copy data to Local 

Memory for quick access. However, Local Memory is fetched with banks. 

�  Banks contain 4 bytes (Fermi) or 8 bytes (Kepler) of memory. 

�  GPUs typically contain 32 banks per SM 

�  If threads access different memory elements, then all fetches occur at 
maximum speed (GOOD).  Otherwise, fetches are sequential (BAD). 
Exception: Broadcast to all threads is fast, can be very powerful 
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4-8 
bytes 

Broadcast 



NVDIA OpenCL Visual Profiler 

� Can profile kernel execution time, as well as host data 
transfer time.  

� Can analyze memory bandwidth and instruction issue rate.  

� Can report number of coalesced loads/stores 

� Occupancy 
�  Ratio of active warps per SM to maximum allowed.  
�  Very informative measure of performance. 
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Exemplar: Short Range Force Solver 

�  Our N-body PM solver can resolve forces to ~ 3 grid units. We then require 
a short range solver to increase the resolution. 

�  A simple approach is to perform a brute force O(N2) nearest neighbor 
calculation (within radius of 3 cells) utilizing an accelerator such as a GPU 
(The P3M Method). 

�  One could also use a tree method to reduce computation. We currently 
have employed such an algorithm, but is not currently accelerated. 

�  The Brute Force method is a simple algorithm which combined with the 
GPU performance enchantment techniques discussed has proven to be a 
factor of 4-5 faster then the CPU tree code.  

�  NOTE: GPU code runs at approximately the same speed most redshift.  
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imagine a cube of data 

divide it into slabs 



~3 grid units 



imagine a GPU 
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Optimization checklist: 
�  Memory Shortage: 

�  Algorithm only requires slabs of data, not the entire cube. 

�  Lock-step execution: 
�  As all particles in a group (chaining mesh) perform the same instruction -- calculate 

force from neighboring meshes -- there is no divergent logic within a work group. 

�  Global Memory Latency: 
�  Each thread caches one particle from neighboring mesh into local memory; (thus only 

one fetch per particle per group not per thread!) 

�    Coalesced Memory Fetching? 
�  Yes.  As particle order does not matter for each mesh bin calculation, each thread can 

do a local cache sequentially, further reducing latency. 

�  Bank Conflicts: 
�  Use broadcast from local memory as group of threads need to fetch the same 

particles. 
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✔

✔

✔

✔

✔



Conclusion 

�  GPU acceleration gains are completely determined by serial fraction of 
the algorithm. 

�  OpenCL allows one to use any heterogeneous platform vs. CUDA which 
is a more mature but vendor specific language.  

�  Multiple GPU specific considerations 
�  Memory Storage 

�  Lock-step execution 

�  Global memory latency 

�  Coalesced memory fetching 

�  Bank Conflicts 

�  Profilers exist to aid you in determining performance 

�  Question? nfrontiere@gmail.com 
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OpenACC 

�  Similar to OpenMP, utilized directives 

�  Perhaps a good first step toward attempting acceleration. 

�  With every higher level language, one loses sophistication 

�  Example:  Matrix Multiplication 
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!$acc kernels  
do k = 1,n1 
     do i = 1,n3 
         c(i,k) = 0.0  
         do j = 1,n2  
             c(i,k) = c(i,k) + a(i,j) * b(j,k)  
         enddo  
     enddo  
enddo 
!$acc end kernels 


